

2nd International Conference on Structured Catalysts and Reactors October 16-19, 2005 Delft, The Netherlands

Optimization of anodic oxidation and Cu-Cr oxide catalyst preparation on structured aluminum plates processed by electro discharge machining

> I.Z. Ismagilov^{1,2}, R.P. Ekatpure², L.T. Tsykoza¹, E.V. Matus¹, E.V. Rebrov², M.H.J.M. de Croon², M.A. Kerzhentsev¹, J.C. Schouten²

> > Presented by Prof. Z.R. Ismagilov

¹Boreskov Institute of Catalysis SB RAN, Novosibirsk, Russia ²Eindhoven University of Technology, Eindhoven, The Netherlands

Introduction

(E.V. Rebrov et al., Catal. Today 69 (2001) 183) Microreactors: tools for both basic research and safe process development, opportunity to safely study the kinetics of catalytic total oxidation:

small unit size

channel diameter < 500 μm (large surface-to-volume ratio) => gas-phase reactions, including explosive ones, can be avoided
highly exothermic reaction => efficient heat

removal

• Spinel catalyst CuCr₂O₄/ γ -Al₂O₃ high oxidation activity

<u>Outline</u>

- Fabrication and characterization of microstructured plates
 - Anodic oxidation of metal plates
 - Oxidation of flat aluminum plates
 - Adaptation of oxidation procedure with the AlMgSi1 alloy

Development of preparation methods of catalytic coatings

- Preparation of Cu-Cr oxide catalytic coatings on flat aluminum plates
- Adaptation of catalysts synthesis procedure for microstructured plate

Microreactor fabrication

Fabrication of microstructured plates

Al microreactor material:

high heat conductivity (230 W/m·K)

- can be used up to 450 °C (m.p. 660 °C)
- microchannels easily made (e.g., by spark erosion)
- anodic oxidation allows formation of external porous
- g-Al₂O₃ layer for catalyst active component deposition

Material

- Al 99.5
- AlMgSi1 alloy

(Al51 st)

EDM procedure

- 1 incision
- 2 incisions
- 3 incisions

Single sided plates h =0.42

Fabrication of microstructured plates

1st series: 21+63 microstructured plates (1 incision)

112

Ra >3

Dimensions: 45 channels with R=208 micron, L=40 mm

Plate weight after EDM

2 incisions

Ra =2.0

2 incisions + micro-powder jet treatment

$$Ra = 2.0$$

<u>Summary</u>

- Fabrication of long (40 mm) microchannels in Al 99.5 (code:1050A) is not possible
- Method "1 incision" gives surface roughness Ra
 >3.2 with the Al51st alloy
- It is possible to reach Ra=2.0 with fabrication method "2 incisions" in Al51st

Anodic oxidation

Temperature vs. time

Voltage vs. time

Oxidation time 29 hrs

Layer thickness : $41\pm1 \ \mu m$ R = 408 μm

Oxidation time 23 hrs

Layer thickness : 29±1 μ m, R = 415 μ m

Coating thickness vs. oxidation time

Flat plates

Microstructured plates

Weight gain after routine oxidation

SEM: anodic oxidation of microstructured AI plates

3 microchannels

1 microchannel

15 μ m of γ -Al₂O₃ have been formed (low thickness due to the other, non-porous Al₂O₃ produced by spark erosion procedure) => anodic oxidation conditions are being optimized to form required 25 μ m of γ -Al₂O₃

Anodized flat aluminum plates: S_{sp}, porosity, SEM

 $S_{sp} (\gamma - Al_2O_3/Al plate) = 95 m^2/cm^3 (30 m^2/g),$ pore volume ~ 14 %, pore (cylindrical shape) distribution maxima at 15 nm and 46 nm <u>Result</u>: Close to expected from literature, input data for catalyst active component deposition

<u>Summary</u>

- Low current density (I= 4 mA/cm2) is required for anodic oxidation of AI51 st
- Low temperature (close to the melting point of the electrolyte) is required to decrease the rate of undesirable reaction with oxalic acid
- Temperature control within ±0.5 K is crucial during oxidation to get reproducible results
- Higher voltage is required in subsequent runs due to copper deposition on the cathodes and copper dissolution in the electrolyte.

Development of spinel catalyst synthesis method using Al₂O₃/Al plates

- 1. Finding initial synthesis conditions by testing different methodologies of catalyst active component deposition using conventional pelleted γ -Al₂O₃ supports
- 2. Synthesis using the flat plates, catalysts characterization (physical methods, catalytic activity), optimization of synthesis conditions
- **3. Synthesis using the microstructured plates**

<u>Catalyst active component deposition on</u> <u>pelleted γ-Al₂O₃ supports</u>

- Limiting condition: on γ -Al₂O₃/Al plates, catalyst calcination T not to exceed 500 °C, because m.p. of Al is ~ 600 °C (especially for microstructured Al plates)
- Method tested on pelleted (1.0-1.6 mm) γ -Al₂O₃: low-T formation of CuCr₂O₄ spinel (impregnation with solution of copper dichromate, drying and calcination at T = 450°C for 4 h)
- XRD, BET results: at T = 450°C dominate low-T solid solutions based on spinel structure (Cu,Cr,Al)[Cr,Al]₂O₄ with lattice parameter a = 7.905-7.960 Å, particle size D < 50 Å and S_{sp} ~ 130 m²/g
- Reference catalyst composition 26%CuCr₂O₄/ γ -Al₂O₃

<u>Catalyst active component deposition on</u> γ -Al₂O₃/Al supports

Parameter	Level of implementation	
	Low (No*)	High (Yes*)
C of impreg- nation soluti- on, g/l	C (250)	C (500)
Time of im- pregnation, h	T (0.25)	T (1.0)
Multiplicity of impregnati- ons *	Μ	Μ
Washing off excess soluti- on *	W	W

Examples (with resulting wt.% of a.c.):

- **C T M W**: 0.4
- **CTMW**: 2.5
- CTMW: 5.3

Results:

• Washing removes most of active component (a.c.)

- Concentrated solution excess a.c. on surface (confirmed by XRD)
- Low concentrations deposit a.c. mostly in pores of $\gamma\text{-}\text{Al}_2\text{O}_3$

XPS and UV-Vis: Cr cations

stronger, than within a.c.

particles themselves

Cr2p_{3/2} of Cr³⁺: 576.5-577.5 eV (577.1 eV for CuCr₂O₄) UV-Vis: $O_h Cr^{3+} \sim 17000 \text{ cm}^{-1}$ and ~ 22000 cm⁻¹ (d-d transitions)

XPS and UV-Vis: Cu cations

Cu2p_{3/2} of Cu²⁺: ~ 933 eV for CuCr₂O₄, ~ 935 eV for CuCO₃ UV-Vis: $T_d Cu^{2+} \sim 13000 \text{ cm}^{-1}$ (d-d transitions)

• For sample with low a.c. loading, the $CuCO_3$ signal overlaps with $CuCr_2O_4$ signal, looking as 1 peak at 933.1 eV. With higher a.c. loadings, $CuCO_3$ signal becomes more pronounced

 Maximum of Cu²⁺ content is observed for medium a.c. loading catalyst (XPS is surface-sensitive). Cu²⁺ is considered the most active part of spinel catalyst => probably, better a.c. dispersion and Cu²⁺ localization for this catalyst

• Shift to higher BE with increase of a.c. loading – opposite to Cr³⁺

XMA: Cu, Cr, AI distributions (sample C T M W: 3.5%CuCr₂O₄)

<u>SEM: γ -Al₂O₃ surface before and after impregnation with CuCr₂O₇</u>

Before: cylindrical pores are clearly visible

After (sample C T M W: 5.3%CuCr₂O₄): surface is covered with CuCr₂O₇

<u>Catalytic activity: deep oxidation of C₄H₁₀</u> <u>on flat plate supported catalyst</u>

initilal $C(C_4H_{10}) = 2000$ ppm in air, GHSV = 120000 h⁻¹ with respect to volume of catalytic coating

Catalyst active component deposition on

microstructured plates

anodized AIMgSiCu-alloy plate without catalytic coating

CTMW 3.7 wt. % CuCr₂O₄

<u>Catalytic activity: deep oxidation of C₄H₁₀ on microstructured plate supported catalyst</u>

 $C(C_4H_{10}) = 2000$ ppm in air, GHSV = 120000 h⁻¹ with respect to volume of catalytic coating

<u>Catalytic activity: deep oxidation of C₄H₁₀ on microstructured plate supported catalyst</u>

initial $C(C_4H_{10}) = 2000 \text{ ppm}$, GHSV = 120000 h⁻¹ vs. γ -Al₂O₃ with respect to volume of catalytic coating

Catalytic microreactor for total oxidation reactions

Conclusions

- 1. The alumina-supported Cu, Cr oxide catalysts for reactions of total oxidation in a microreactor were synthesized using flat and microstructured anodized AI plates and characterized
- 2. The formation of $CuCr_2O_4$ active component on γ -Al₂O₃/Al plates produced by anodic oxidation was confirmed by XPS, UV-Vis, XRD, XMA and SEM
- 3. The best catalyst synthesis method is via double impregnation for 15 min with a diluted aqueous solution of copper dichromate
- The C₄H₁₀ oxidation activities of coatings even at much less cotent of active component are superior to that of the reference pelleted catalyst

Acknowledgements

Netherlands Organization for Scientific Research (NWO)

and

Russian Foundation for Basic Research (RFBR)

for the financial support of this Project